The fossil record of grasses preserved in amber

Authors

George Poinar
Oregon State University
https://orcid.org/0000-0002-3479-6997

Synopsis

This study briefly discusses the role of extant grasses as food (e.g., wheat, corn, rice) and construction crops (e.g., bamboo, reeds). It then examines fossil grasses based on their presence in amber deposits worldwide.  Emphasis is placed on the body fossils of grasses, especially those of the genus Programinis, a primitive bamboo dating back to the mid-Cretaceous that suffered from ergot parasitism.  It then transitions to the Eocene Baltic amber grass, Eograminis balticus, followed by the Miocene Pharus primuncinatus that was attached to the pelage of a mammal.  Also in Dominican amber were the grasses Alarista succina and Panicum sp. whose spikelets were being carried by ants.  A discussion on grass phytoliths shows their application in identifying various fossil grasses and their potential role as insecticides.

References

Crepet W.L, & Feldman, G. D. (1991). The earliest remains of Grasses in the fossil record. Botany, 78, 1010-1014.

Cruickshank, R. D. & Ko, K. (2003). Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441-455.

Draper, G., Mann, P., & Lewis, J. F. (1994). Hispaniola. In: S. Donovan & T. A. Jackson (Eds.) Caribbean Geology: an introduction. (pp. 129–150). University of the West Indies Publishers.

Herodotus, (1942). The Persian Wars. The Modern Library.

Heywood, V. H. (1993). Flowering plants of the World (p.336). Oxford University Press. Hitchcock, A. S. (1950). Manual of the Grasses of the United States) (pp. 1049). USDA Miscellaneous Publication No. 200, Government Printing Office.

Iturralde-Vinent, M.A., & MacPhee, R. D. E. (1996). Age and Paleogeographic origin of Dominican amber. Science 273, 1850–1852.

Manske, L. L. (2023). The age of grasses has recently doubled to 113 million years. (pp.1-19). North Dakota State University publication,

Piperno, D. R. (2006). Phytoliths. Alti Mira Press, Landham, Maryland, 238 pp.

Poinar, Jr. G. (1961). Anatomical studies on the flowers of orchard grass. Dactylis glomerata.(p. 30). Unpublished term paper prepared for Prof. D.W. Bierhorst, Cornell University.

Poinar, G. O., Jr. (1991). Hymenaea protera sp.n. (Leguminosae: Caesalpinoideae) from Dominican amber has African affinities. Experientia. 47,1075-1082.

Poinar, G. O., Jr. (2004). Programinis burmitis gen et sp. nov., and P. laminatus sp. nov., Early Cretaceous grass-like monocots in Burmese amber. Australian Systematic Botany 17, 497-504. Poinar, Jr. G. (2011). Silica bodies in the Early Cretaceous Programinis laminatus (Angiospermae: Poales). Palaeodiversity 4, 1-6. 2509-6753

Poinar, Jr., G. O. & Columbus J. T. (1992). Adhesive grass spikelet with mammalian hair in Dominican amber: First fossil evidence of epizoochory. Experientia 48, 906-908.

Poinar, Jr., G.O & Columbus, J. T. (2012). Alarista succina gen. et sp. nov. (Poaceae: Bambusoideae) in Dominican amber. Historical Biology 25, 1-6.

Poinar, Jr., G. O., & Hess, R. (1985). Preservative qualities of recent and fossil resins: Electron micrograph studies on tissues preserved in Baltic amber. Journal of Baltic Studies 16, 222-233.

Poinar, Jr ,.G.O. & Judziewicz, E. J. (2005). Pharus primuncinatus (Poacae: Pharoideae: Phareae) from Dominican amber. Sida, 21, 2095-2103.

Poinar, G. O., Jr., & Soreng, R. J. (2021). A new genus and species of grass, Eograminis balticus (Poaceae: Arundinoideae), in Baltic amber. International Journal of Plant Sciences, 182. https://doi.org/10.1086/716781

Poinar Jr. G., Alderman, S. & Wunderlich, J. (2015). One hundred million year old ergot: psychotropic compounds in the Cretaceous? Palaeodiversity 8, 13-19.

Saarinen, J., Mantzouka, D., Sakala, J. (2020). Aridity, cooling, open vegetation and the evolution of plants and animals during the Cenozoic. Section 3.2, Cretaceous: The Origin of Grasses Poaceae).(pp. 86-88). Nature through time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer Nature, https://doi.org/10.1007/978-3-030-35058-1_3

Sadowski, E-M., Schmidt, A. R, Seyfullah, L. J., Kunzmann, L. (2017). Conifers of the “Baltic amber forest” and their palaeoecological significance. Stapfia 106,1-73.

Schlee, D. (1990). Das Bernstein-Kabinett. Stuttgarter Beitrager zur Naturkunde, Ser. C., 28, 1-100.

Shi, G, Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Yang, M., Lei, W., Li., Q., Li, X. (2012). Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37, 155-163.

Wheeler, W. M. (1910). Ants; their structure, development and behavior. Columbia University Press.

Whitney, L.D., Hosaka, E.Y. & Ripperton, J.C. 1939. Grasses of the Hawaiian Ranges. Hawaii Agriculture Experiment station Bulletin 82.1-147.

Wuang, W. Zhang, L., Columbus, J., Travis, Hu., Ya, Zhao, Y. Tang, L, Guo, Z, Chen, W, McKain, M, Bartlett, M, Huang, C-H, Li, D-Z, Ge, S. & Ma, H. (2020). A well-supported nuclear Phylogeny of Poaceae and implications for the evolution of C4 photosynyhesis. Molecular Plant 15, 755-777. https://doi.org/10.1016/j.molp.2022.01.015

The fossil record of grasses preserved in amber

Downloads

Published

29 April 2025